Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Feng-Wu Wang* and Yi-Jun Wei

Department of Chemistry, Huainan Normal College, Huainan 232001, People's Republic of China

Correspondence e-mail: fengwu_wang@126.com

Key indicators

Single-crystal X-ray study T = 298 K Mean σ (C–C) = 0.004 Å R factor = 0.035 wR factor = 0.086 Data-to-parameter ratio = 18.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Azido{2,4-dichloro-6-[2-(diethylamino)ethyliminomethyl]phenolato}nickel(II)

The title mononuclear nickel(II) complex, $[Ni(C_{13}H_{17}Cl_2 N_2O)(N_3)]$, is isostructural with the copper(II) complex reported recently by Wei & Wang [*Acta Cryst.* (2006), E**62**, m309–m311]. The Ni^{II} ion is four-coordinate in a square-planar geometry defined by an imine N, an amine N, a phenolate O atom of the Schiff base and a terminal N atom of the azide anion.

Comment

Schiff base ligands have played an important role in the development of coordination chemistry as they readily form stable complexes with most transition metal ions (Ueno *et al.*, 2004; Pal *et al.*, 2005; Hou, 2005). Recently, we reported a mononuclear copper(II) complex, azido{2,4-dichloro-6-[2-(diethylamino)ethyliminomethyl]phenolato}copper(II), (II), derived from the Schiff base ligand 2,4-dichloro-6-[2-(diethylamino)ethyliminomethyl]phenol (Wei & Wang, 2006). As an extension of our work on the complexes derived from this ligand, the title nickel(II) complex, (I), has been investigated.

The Ni atom in mononuclear (I) is four-coordinated by an imine N, an amine N, a phenolate O atom derived from the Schiff base and a terminal N atom of the azide anion, giving a square planar geometry. The Ni–ligand bond lengths (Table 1) are shorter than the corresponding values observed in isostructural (II), and within the ranges expected for Ni–Schiff base structures (de Castro *et al.*, 2001; Chakraborty *et al.*, 2004; Wei, 2005). The bond angles around the central metal in (I) are comparable to those in (II), and also show some deviations from ideal square-planar geometry (Table 1). In the crystal structure, adjacent molecules are linked through weak Cl···Cl interactions, forming loosely associated dimers (Fig. 2), such that Cl2····Cl2ⁱ is 3.4908 (12) [symmetry code: (i) 1 - x, 1 - y, 2 - z. There are also weak C–H···N5ⁱⁱ interactions linking molecules into chains along the *b* axis (Table 2).

Experimental

3,5-Dichlorosalicyaldehyde (1.0 mmol, 192.1 mg), N,N-diethylethane-1,2-diamine (1.0 mmol, 116.2 mg), NaN₃ (1.0 mmol, 65.3 mg) and Ni(NO₃)₂·6H₂O (1.0 mmol, 290.7 mg) were dissolved in an MeOH solution (150 ml). The mixture was refluxed at 340 K for Received 18 January 2006 Accepted 20 February 2006

All rights reserved

© 2006 International Union of Crystallography

Figure 1

The structure of (I). Displacement ellipsoids are drawn at the 30% probability level.

about 1 h to give a clear green solution. After keeping the cooled solution in the dark for 5 days, green block-shaped crystals were formed.

Crystal data

$[Ni(C_{13}H_{17}Cl_2N_2O)(N_3)]$	$D_x = 1.603 \text{ Mg m}^{-3}$
$M_r = 388.93$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/c$	Cell parameters from 3623
a = 16.361 (2) Å	reflections
b = 9.735 (1) Å	$\theta = 2.4 - 26.7^{\circ}$
c = 10.165 (1) Å	$\mu = 1.54 \text{ mm}^{-1}$
$\beta = 95.656 \ (1)^{\circ}$	T = 298 (2) K
V = 1611.1 (3) Å ³	Block, green
Z = 4	$0.23 \times 0.20 \times 0.12 \text{ mm}$

Data collection

Bruker SMART CCD area-detector	3618 independent reflections
diffractometer	2772 reflections with $I > 2\sigma(I)$
ω scans	$R_{\rm int} = 0.028$
Absorption correction: multi-scan	$\theta_{\rm max} = 27.5^{\circ}$
(SADABS; Sheldrick, 1996)	$h = -20 \rightarrow 21$
$T_{\min} = 0.718, T_{\max} = 0.836$	$k = -12 \rightarrow 12$
10944 measured reflections	$l = -13 \rightarrow 13$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_0^2)]$
$R[F^2 > 2\sigma(F^2)] = 0.035$	+ 0.2299P
$wR(F^2) = 0.086$	where $P = 0$
S = 1.02	$(\Delta/\sigma)_{\rm max} < 0.0$
3618 reflections	$\Delta \rho_{\rm max} = 0.40$
201 parameters	$\Delta \rho_{\rm min} = -0.21$
H-atom parameters constrained	

Table 1

			0	
Selected	geometric	narameters i	(Δ)	$^{\circ}$
Scietteu	200mcuic	Darameters	<i>n</i> .	

Ni1-O1	1.840 (2)	Ni1-N2	1.967 (2)	
Ni1-N1	1.850 (2)	Ni1-N3	1.894 (2)	
O1-Ni1-N1	93.87 (7)	N1-Ni1-N2	86.83 (8)	
O1-Ni1-N2	178.84 (7)	N1-Ni1-N3	176.76 (8)	
O1-Ni1-N3	89.33 (8)	N2-Ni1-N3	89.97 (9)	

Figure 2

The crystal packing of (I), highlighting the Cl···Cl interactions (dashed lines).

Table 2	
Hydrogen-bond geometry (Å, °).	

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
C10−H10B···N3	0.97	2.56	2.915 (2)	102
$C12 - H12B \cdot \cdot \cdot N3$	0.97	2.59	3.125 (2)	115
C13−H13A···N5	0.97	2.66	3.576 (4)	159

Symmetry code: (i) x, 1 + y, z.

All H atoms were placed in idealized positions and constrained to ride on their parent atoms, with C-H distances in the range 0.93-0.97 Å, and with $U_{iso}(H) = 1.2$ or $1.5U_{eq}(C)$.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

The authors acknowledge the Natural Science Foundation of Anhui Provincial Universities, People's Republic of China, for research grant No. 2005 K J019ZD.

References

reflections

 $(0.0415P)^2$

еÅ

 $2F_{c}^{2})/3$

Bruker (1998). SMART (Version 5.628) and SAINT (Version 6.02). Bruker AXS Inc., Madison, Wisconsin, USA.

- Castro, B. de, Freire, C., Duarte, M. T., Minas da Piedade, M. F. & Santos, I. C. (2001). Acta Cryst. C57, 370-372.
- Chakraborty, S., Samanta, B., Chowdhury, C. R., Mitra, S. & Mukherjee, A. K. (2004). Acta Cryst. C60, m578-m580.
- Hou, N.-N. (2005). Acta Cryst. E61, m1197-m1198.
- Pal, S., Barik, A. K., Gupta, S., Hazra, A., Kar, S. K., Peng, S.-M., Lee, G.-H., Butcher, R. J., El Fallah, M. S. & Ribas, J. (2005). Inorg. Chem. 44, 3880-3889
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
- Ueno, T., Ohashi, M., Kono, M., Kondo, K., Suzuki, A., Yamane, T. & Watanabe, Y. (2004). Inorg. Chem. 43, 2852-2858.
- Wei, Y.-J. (2005). Acta Cryst. E61, m1088-m1089.
- Wei, Y.-J. & Wang, F.-W. (2006). Acta Cryst. E62, m309-m311.